Damien Galant

CERAMATHS/DMATHS Université Polytechnique Hauts-de-France

Département de Mathématique Université de Mons F R S - FNRS Research Fellow

Ground states

Joint work with Colette De Coster (UPHF), Simone Dovetta and Enrico Serra (Politecnico di Torino)

Monday 16 January 2023

Metric graphs

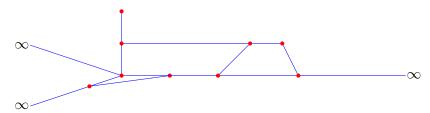
- Metric graphs
- 2 The nonlinear Schrödinger equation on metric graphs
- On the notion of ground state

4 Some proof techniques

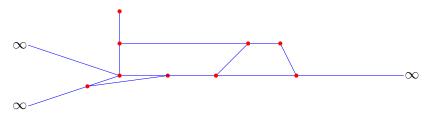
A metric graph is made of vertices

On the notion of "ground state" for NLS

A metric graph is made of vertices and of edges joining the vertices or going to infinity.



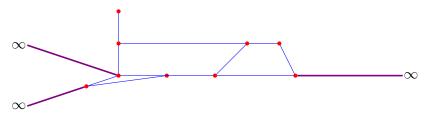
A metric graph is made of vertices and of edges joining the vertices or going to infinity.



metric graphs: the length of edges are important.

Metric graphs

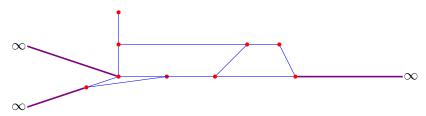
A metric graph is made of vertices and of edges joining the vertices or going to infinity.



- metric graphs: the length of edges are important.
- the edges going to infinity are halflines and have infinite length.

Metric graphs

A metric graph is made of vertices and of edges joining the vertices or going to infinity.



- metric graphs: the length of edges are important.
- the edges going to infinity are halflines and have infinite length.
- a metric graph is compact if and only if it has a finite number of edges of finite length.

The halfline

The halfline

 ∞ ∞ ∞ ∞ ∞

The 5-star graph

The halfline

 ∞

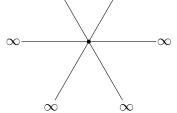
 ∞

 ∞

 ∞

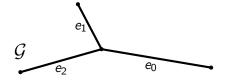
The 5-star graph

 ∞



The 6-star graph

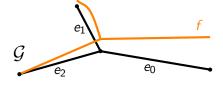
Functions defined on metric graphs



A metric graph $\mathcal G$ with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3)

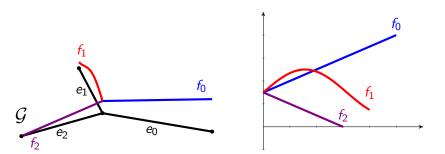
Ground states

Functions defined on metric graphs



A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3), a function $f: \mathcal{G} \to \mathbb{R}$

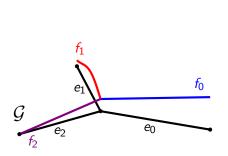
Functions defined on metric graphs

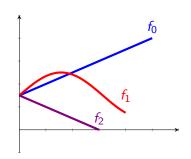


A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3), a function $f: \mathcal{G} \to \mathbb{R}$, and the three associated real functions.

Metric graphs

Functions defined on metric graphs





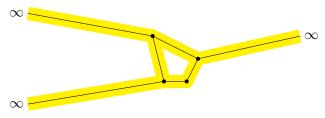
A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3), a function $f:\mathcal{G}\to\mathbb{R}$, and the three associated real functions.

$$\int_{\mathcal{G}} f \, dx \stackrel{\text{def}}{=} \int_{0}^{5} f_{0}(x) \, dx + \int_{0}^{4} f_{1}(x) \, dx + \int_{0}^{3} f_{2}(x) \, dx$$

Why studying metric graphs?

Physical motivations

Modeling structures where only one spatial direction is important.



A « fat graph » and the underlying metric graph

NLS

Given constants p>2 and $\lambda>0$, we are interested in solutions $u\in L^2(\mathcal{G})$ of the differential system

Some proof techniques

Given constants p > 2 and $\lambda > 0$, we are interested in solutions $u \in L^2(\mathcal{G})$ of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \end{cases}$$

NIS

Given constants p>2 and $\lambda>0$, we are interested in solutions $u\in L^2(\mathcal{G})$ of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge e of \mathcal{G},} \\ u \text{ is continuous} & \text{for every vertex v of \mathcal{G},} \end{cases}$$

NIS

Given constants p>2 and $\lambda>0$, we are interested in solutions $u\in L^2(\mathcal{G})$ of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge e of \mathcal{G},} \\ u \text{ is continuous} & \text{for every vertex v of \mathcal{G},} \\ \sum_{e \succ v} \frac{\mathrm{d}u}{\mathrm{d}x_e}(v) = 0 & \text{for every vertex v of \mathcal{G},} \end{cases}$$

NIS

Given constants p>2 and $\lambda>0$, we are interested in solutions $u\in L^2(\mathcal{G})$ of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge e of \mathcal{G},} \\ u \text{ is continuous} & \text{for every vertex v of \mathcal{G},} \\ \sum_{e \succ V} \frac{\mathrm{d} u}{\mathrm{d} x_e}(v) = 0 & \text{for every vertex v of \mathcal{G},} \end{cases}$$

where the symbol $e \succ V$ means that the sum ranges over all edges of vertex V and where $\frac{\mathrm{d} u}{\mathrm{d} x_e}(V)$ is the outgoing derivative of u at V (*Kirchhoff's condition*).

NIS

Given constants p>2 and $\lambda>0$, we are interested in solutions $u\in L^2(\mathcal{G})$ of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge e of \mathcal{G},} \\ u \text{ is continuous} & \text{for every vertex v of \mathcal{G},} \\ \sum_{e \succ v} \frac{\mathrm{d}u}{\mathrm{d}x_e}(v) = 0 & \text{for every vertex v of \mathcal{G},} \end{cases} \tag{NLS}$$

where the symbol $e \succ V$ means that the sum ranges over all edges of vertex V and where $\frac{\mathrm{d}u}{\mathrm{d}x_e}(V)$ is the outgoing derivative of u at V (*Kirchhoff's condition*).

Given constants p>2 and $\lambda>0$, we are interested in solutions $u\in L^2(\mathcal{G})$ of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge e of \mathcal{G},} \\ u \text{ is continuous} & \text{for every vertex v of \mathcal{G},} \\ \sum_{e \succ v} \frac{\mathrm{d}u}{\mathrm{d}x_e}(v) = 0 & \text{for every vertex v of \mathcal{G},} \end{cases} \tag{NLS}$$

where the symbol $e \succ V$ means that the sum ranges over all edges of vertex V and where $\frac{\mathrm{d} u}{\mathrm{d} x_e}(V)$ is the outgoing derivative of u at V (*Kirchhoff's condition*).

We denote by $S_{\lambda}(G)$ the set of solutions of the differential system.

Kirchoff's condition: degree one nodes

$$\lim_{t \to 0} 0 \frac{u(x_1 + t) - u(x_1)}{t} = 0$$

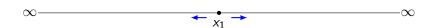
Kirchoff's condition: degree one nodes

$$\lim_{t \to 0} \frac{u(x_1 + t) - u(x_1)}{t} = 0$$

In other words, the derivative of u at x_1 vanishes: this is the usual Neumann condition.

Metric graphs

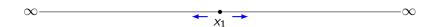
Kirchoff's condition: degree two nodes



$$\left(\lim_{t \xrightarrow{t>0}} 0 \frac{u(x_1+t)-u(x_1)}{t}\right) + \left(\lim_{t \xrightarrow{t>0}} 0 \frac{u(x_1-t)-u(x_1)}{t}\right) = 0$$

Metric graphs

Kirchoff's condition: degree two nodes

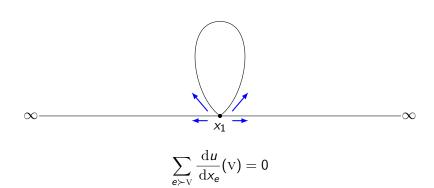


$$\left(\lim_{t \xrightarrow{t>0}} 0 \frac{u(x_1+t)-u(x_1)}{t}\right) + \left(\lim_{t \xrightarrow{t>0}} 0 \frac{u(x_1-t)-u(x_1)}{t}\right) = 0$$

In other words, the left and right derivatives of u are equal, which simply means that u is differentiable at x_1 . This explains why usually we do not put degree two nodes.

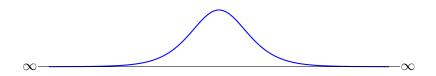
Metric graphs

Kirchoff's condition in general: outgoing derivatives



Metric graphs

The real line: $\mathcal{G} = \mathbb{R}$

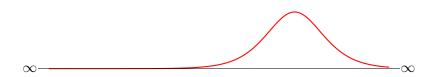


$$S_{\lambda}(\mathbb{R}) = \left\{ \pm \varphi_{\lambda}(x+a) \mid a \in \mathbb{R} \right\}$$

where the soliton φ_{λ} is the unique strictly positive and even solution to

$$u'' + |u|^{p-2}u = \lambda u.$$

The real line: $\mathcal{G} = \mathbb{R}$

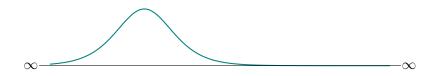


$$S_{\lambda}(\mathbb{R}) = \left\{ \pm \varphi_{\lambda}(x+a) \mid a \in \mathbb{R} \right\}$$

where the $\mathit{soliton}\ \varphi_\lambda$ is the unique strictly positive and even solution to

$$u'' + |u|^{p-2}u = \lambda u.$$

The real line: $\mathcal{G} = \mathbb{R}$

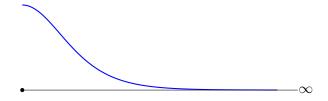


$$\mathcal{S}_{\lambda}(\mathbb{R}) = \left\{ \pm \varphi_{\lambda}(x+a) \mid a \in \mathbb{R} \right\}$$

where the soliton φ_{λ} is the unique strictly positive and even solution to

$$u'' + |u|^{p-2}u = \lambda u.$$

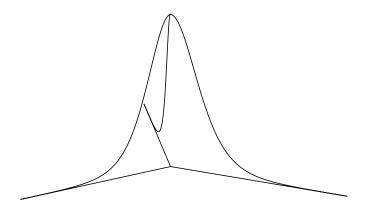
The halfline: $\mathcal{G} = \mathbb{R}^+ = [0, +\infty[$



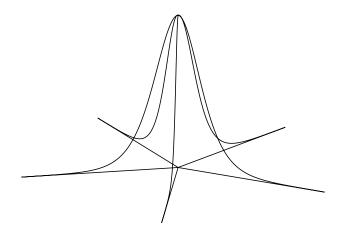
$$\mathcal{S}_{\lambda}(\mathbb{R}^{+}) = \left\{ \pm \varphi_{\lambda}(x)_{|\mathbb{R}^{+}} \right\}$$

Solutions are half-solitons: no more translations!

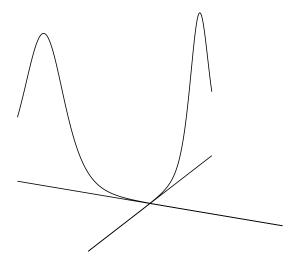
The positive solution on the 3-star graph



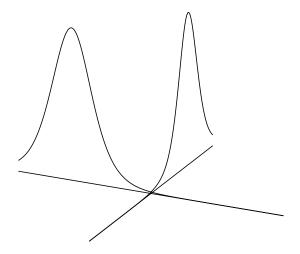
The positive solution on the 5-star graph

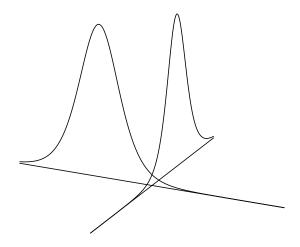


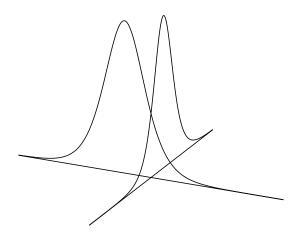
A continuous family of solutions on the 4-star graph

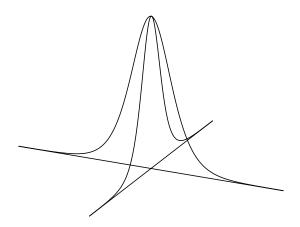


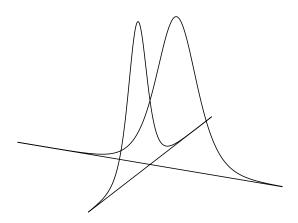
A continuous family of solutions on the 4-star graph

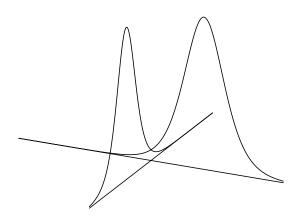


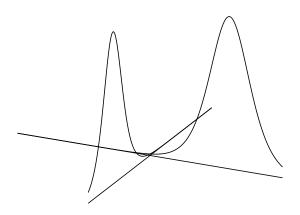


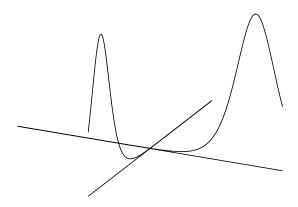












Variational formulation

Metric graphs

We work on the Sobolev space

$$H^1(\mathcal{G}) := \left\{ u : \mathcal{G} \to \mathbb{R} \mid u \text{ is continuous, } u, u' \in L^2(\mathcal{G}) \right\}.$$

We work on the Sobolev space

$$H^1(\mathcal{G}) := \left\{ u : \mathcal{G}
ightarrow \mathbb{R} \mid u ext{ is continuous, } u, u' \in L^2(\mathcal{G})
ight\}.$$

Ground states

Solutions of (NLS) correspond to critical points of the action functional

$$J_{\lambda}(u) := \frac{1}{2} \|u'\|_{L^{2}(\mathcal{G})}^{2} + \frac{1}{2} \|u\|_{L^{2}(\mathcal{G})}^{2} - \frac{1}{p} \|u\|_{L^{p}(\mathcal{G})}^{p}.$$

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J_\lambda'(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2} u(x)v(x) \,\mathrm{d}x$$

Ground states

The differential of $J_{\lambda}:H^1(\mathcal{G})\to\mathbb{R}$ is given by

$$J_{\lambda}'(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

Ground states

If φ has compact support in the interior of an edge $e={\scriptscriptstyle AB}$, we have

$$0=J_\lambda'(u)[\varphi]$$

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J_{\lambda}'(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

Ground states

If φ has compact support in the interior of an edge e = AB, we have

$$0 = J'_{\lambda}(u)[\varphi]$$

$$= \int_{e} u'(x)\varphi'(x) dx + \lambda \int_{e} u(x)\varphi(x) dx - \int_{e} |u(x)|^{p-2}u(x)\varphi(x) dx$$

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J_\lambda'(u)[v] = \int_{\mathcal{G}} u'(x)v'(x)\,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x)\,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x)\,\mathrm{d}x$$

Ground states

If φ has compact support in the interior of an edge e = AB, we have

$$0 = J'_{\lambda}(u)[\varphi]$$

$$= \int_{e} u'(x)\varphi'(x) dx + \lambda \int_{e} u(x)\varphi(x) dx - \int_{e} |u(x)|^{p-2}u(x)\varphi(x) dx$$

$$= \frac{du}{dx_{e}}(B)\underbrace{\varphi(B)}_{=0} - \frac{du}{dx_{e}}(A)\underbrace{\varphi(A)}_{=0}$$

$$+ \int_{e} (-u''(x) + \lambda u(x) - |u(x)|^{p-2}u(x))\varphi(x) dx$$

Ground states

The Euler-Lagrange equation associated to J_{λ}

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J_\lambda'(u)[v] = \int_{\mathcal{G}} u'(x)v'(x)\,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x)\,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x)\,\mathrm{d}x$$

If φ has compact support in the interior of an edge e = AB, we have

$$0 = J'_{\lambda}(u)[\varphi]$$

$$= \int_{e} u'(x)\varphi'(x) dx + \lambda \int_{e} u(x)\varphi(x) dx - \int_{e} |u(x)|^{p-2}u(x)\varphi(x) dx$$

$$= \frac{du}{dx_{e}}(B)\underbrace{\varphi(B)}_{=0} - \frac{du}{dx_{e}}(A)\underbrace{\varphi(A)}_{=0}$$

$$+ \int_{e} (-u''(x) + \lambda u(x) - |u(x)|^{p-2}u(x))\varphi(x) dx$$

so that $u'' + |u|^{p-2}u = \lambda u$ on edges of \mathcal{G} .

Let A be a vertex of $\mathcal G$ and let B_1,\dots,B_D be the vertices adjacent to A.

Metric graphs

Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of \mathcal{G} , $\varphi(A) = 1$ and $\varphi(V) = 0$ for all vertices $V \neq A$. Denote $e_i := AB_i$. Then,

Metric graphs

Let A be a vertex of $\mathcal G$ and let B_1,\ldots,B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of $\mathcal G$, $\varphi(A)=1$ and $\varphi(V)=0$ for all vertices $V\neq A$. Denote $e_i:=AB_i$. Then,

$$0 = J'_{\lambda}(u)[\varphi]$$

$$= \sum_{1 \le i \le D} \left(\int_{e_i} u' \varphi' \, \mathrm{d}x + \lambda \int_{e_i} u \varphi \, \mathrm{d}x - \int_{e_i} |u|^{p-2} u \varphi \, \mathrm{d}x \right)$$

Metric graphs

Let A be a vertex of $\mathcal G$ and let B_1,\ldots,B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of $\mathcal G$, $\varphi(A)=1$ and $\varphi(V)=0$ for all vertices $V\neq A$. Denote $e_i:=AB_i$. Then,

$$0 = J'_{\lambda}(u)[\varphi]$$

$$= \sum_{1 \le i \le D} \left(\int_{e_i} u' \varphi' \, dx + \lambda \int_{e_i} u \varphi \, dx - \int_{e_i} |u|^{p-2} u \varphi \, dx \right)$$

$$= \sum_{1 \le i \le D} \left(\frac{du}{dx_{e_i}} (B_i) \underbrace{\varphi(B_i)}_{=0} - \frac{du}{dx_{e_i}} (A_i) \underbrace{\varphi(A)}_{=1} \right)$$

$$+ \sum_{1 \le i \le D} \int_{e_i} \left(\underbrace{-u'' + \lambda u - |u|^{p-2} u} \right) \varphi(x) \, dx$$

Let A be a vertex of $\mathcal G$ and let B_1,\ldots,B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of $\mathcal G$, $\varphi(A)=1$ and $\varphi(V)=0$ for all vertices $V\neq A$. Denote $e_i:=AB_i$. Then,

$$0 = J'_{\lambda}(u)[\varphi]$$

$$= \sum_{1 \le i \le D} \left(\int_{e_i} u' \varphi' \, \mathrm{d}x + \lambda \int_{e_i} u \varphi \, \mathrm{d}x - \int_{e_i} |u|^{p-2} u \varphi \, \mathrm{d}x \right)$$

$$= \sum_{1 \le i \le D} \left(\frac{\mathrm{d}u}{\mathrm{d}x_{e_i}} (B_i) \underbrace{\varphi(B_i)}_{=0} - \frac{\mathrm{d}u}{\mathrm{d}x_{e_i}} (A_i) \underbrace{\varphi(A)}_{=1} \right)$$

$$+ \sum_{1 \le i \le D} \int_{e_i} (\underbrace{-u'' + \lambda u - |u|^{p-2}u}) \varphi(x) \, \mathrm{d}x$$

so that $\sum_{1 \le i \le D} \frac{du}{dx_e}(A_i) = 0$, which is Kirchhoff's condition.

The Nehari manifold

Metric graphs

The functional J_{λ} is not bounded from below on $H^1(\mathcal{G})$, since if $u \neq 0$ then

$$J_{\lambda}(tu) = \frac{t^2}{2} \|u'\|_{L^2(\mathcal{G})}^2 + \frac{t^2}{2} \|u\|_{L^2(\mathcal{G})}^2 - \frac{t^p}{p} \|u\|_{L^p(\mathcal{G})}^p \xrightarrow[t \to \infty]{} -\infty.$$

The functional J_{λ} is not bounded from below on $H^1(\mathcal{G})$, since if $u \neq 0$ then

$$J_{\lambda}(tu) = \frac{t^2}{2} \|u'\|_{L^2(\mathcal{G})}^2 + \frac{t^2}{2} \|u\|_{L^2(\mathcal{G})}^2 - \frac{t^p}{p} \|u\|_{L^p(\mathcal{G})}^p \xrightarrow[t \to \infty]{} -\infty.$$

A common strategy is to introduce the Nehari manifold $\mathcal{N}_{\lambda}(\mathcal{G})$, defined by

$$\begin{split} \mathcal{N}_{\lambda}(\mathcal{G}) &:= \left\{ u \in H^{1}(\mathcal{G}) \setminus \{0\} \mid J_{\lambda}'(u)[u] = 0 \right\} \\ &= \left\{ u \in H^{1}(\mathcal{G}) \setminus \{0\} \mid \|u'\|_{L^{2}(\mathcal{G})}^{2} + \lambda \|u\|_{L^{2}(\mathcal{G})}^{2} = \|u\|_{L^{p}(\mathcal{G})}^{p} \right\}. \end{split}$$

The Nehari manifold

Metric graphs

The functional J_{λ} is not bounded from below on $H^1(\mathcal{G})$, since if $u \neq 0$ then

$$J_{\lambda}(tu) = \frac{t^2}{2} \|u'\|_{L^2(\mathcal{G})}^2 + \frac{t^2}{2} \|u\|_{L^2(\mathcal{G})}^2 - \frac{t^p}{p} \|u\|_{L^p(\mathcal{G})}^p \xrightarrow[t \to \infty]{} -\infty.$$

A common strategy is to introduce the *Nehari manifold* $\mathcal{N}_{\lambda}(\mathcal{G})$, defined by

$$\begin{split} \mathcal{N}_{\lambda}(\mathcal{G}) &:= \left\{ u \in H^{1}(\mathcal{G}) \setminus \{0\} \mid J_{\lambda}'(u)[u] = 0 \right\} \\ &= \left\{ u \in H^{1}(\mathcal{G}) \setminus \{0\} \mid \|u'\|_{L^{2}(\mathcal{G})}^{2} + \lambda \|u\|_{L^{2}(\mathcal{G})}^{2} = \|u\|_{L^{p}(\mathcal{G})}^{p} \right\}. \end{split}$$

If $u \in \mathcal{N}_{\lambda}(\mathcal{G})$, then

$$J_{\lambda}(u) = \left(\frac{1}{2} - \frac{1}{p}\right) \|u\|_{L^{p}(\mathcal{G})}^{p}.$$

In particular, J_{λ} is bounded from below on $\mathcal{N}_{\lambda}(\mathcal{G})$.

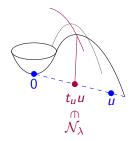
Geometry¹

Metric graphs

One can show that for every $u \in H^1(\mathcal{G}) \setminus \{0\}$, there exists a unique $t_u > 0$ so that $t_u u \in \mathcal{N}_{\lambda}(\mathcal{G})$, characterized by

Ground states

$$J_{\lambda}(t_{u}u) = \max_{t>0} J_{\lambda}(tu).$$



¹Thanks to C. Troestler for the picture!

Two energy levels

Metric graphs

« Ground state » energy level:

$$c_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u)$$

Two energy levels

Metric graphs

« Ground state » energy level:

$$c_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u)$$

■ Ground state: function $u \in \mathcal{N}_{\lambda}(\mathcal{G})$ with level $c_{\lambda}(\mathcal{G})$. It is a solution of the differential system (NLS).

Two energy levels

Metric graphs

« Ground state » energy level:

$$c_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u)$$

- Ground state: function $u \in \mathcal{N}_{\lambda}(\mathcal{G})$ with level $c_{\lambda}(\mathcal{G})$. It is a solution of the differential system (NLS).
- Minimal level attained by the solutions of (NLS):

$$\sigma_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{S}_{\lambda}(\mathcal{G})} J_{\lambda}(u).$$

« Ground state » energy level:

$$c_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u)$$

- Ground state: function $u \in \mathcal{N}_{\lambda}(\mathcal{G})$ with level $c_{\lambda}(\mathcal{G})$. It is a solution of the differential system (NLS).
- Minimal level attained by the solutions of (NLS):

$$\sigma_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{S}_{\lambda}(\mathcal{G})} J_{\lambda}(u).$$

■ Minimal action solution: solution $u \in S_{\lambda}(\mathcal{G})$ of the differential system (NLS) of level $\sigma_{\lambda}(\mathcal{G})$.

Four cases

Metric graphs

An analysis shows that four cases are possible:

Ground states

Metric graphs

An analysis shows that four cases are possible:

A1) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;

An analysis shows that four cases are possible:

- A1) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;

Ground states

An analysis shows that four cases are possible:

- A1) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;
- B1) $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G}), \ \sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$;

Ground states

An analysis shows that four cases are possible:

- A1) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;
- B1) $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G}), \ \sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$;
- B2) $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained.

Ground states

Ground states

Four cases

Metric graphs

An analysis shows that four cases are possible:

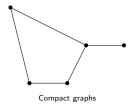
- A1) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;
- B1) $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G}), \ \sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$;
- B2) $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained.

Theorem (De Coster, Dovetta, G., Serra (to appear))

For every p > 2, every $\lambda > 0$, and every choice of alternative between A1, A2, B1, B2, there exists a metric graph \mathcal{G} where this alternative occurs.

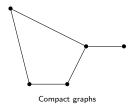
Case A1

 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained



Case A1

 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained

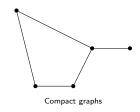




The line

Case A1

 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained

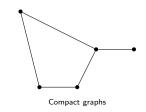


The halfline

Some proof techniques

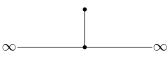
Case A1

 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained



The halfline

The line



The line with one pendant

Proposition

Metric graphs

Assume that \mathcal{G} has at least one halfline. Then,

$$c_{\lambda}(\mathcal{G}) \leq s_{\lambda} := J_{\lambda}(\varphi_{\lambda})$$

Ground states

A very useful tool: cutting solitons on halflines

Proposition

Metric graphs

Assume that \mathcal{G} has at least one halfline. Then,

$$c_{\lambda}(\mathcal{G}) \leq s_{\lambda} := J_{\lambda}(\varphi_{\lambda})$$

Proof.

Case A1

 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained

Theorem (Adami, Serra, Tilli 2014)

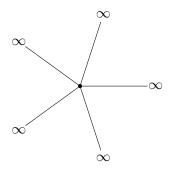
Let $\mathcal G$ be a metric graph with finitely many edges, including at least one halfline. Assume that

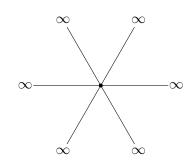
$$c_{\lambda}(\mathcal{G}) < s_{\lambda}$$
.

Then $c_{\lambda}(\mathcal{G})$ is attained, which means that there exists a ground state, so we are in case A1: $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$, both attained.

Metric graphs

 $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G}), \ \sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$



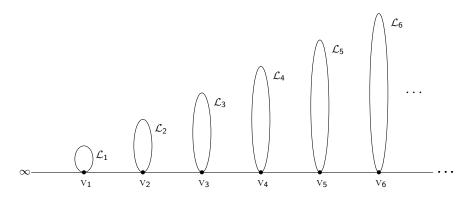


N-star graphs, $N \geq 3$

$$s_{\lambda} = c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G}) = \frac{N}{2}s_{\lambda}$$

Case A2

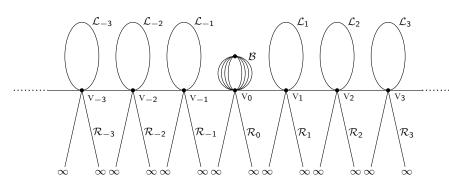
 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained



$$s_{\lambda} = c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$$

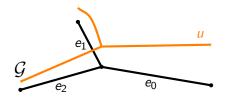
Case B2

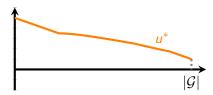
 $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained



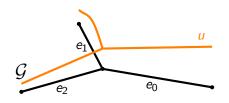
$$s_{\lambda} = c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G})$$

Decreasing rearrangement on the halfline





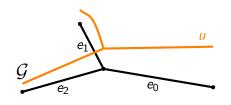
Decreasing rearrangement on the halfline

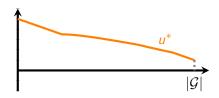


Fundamental property: for all t > 0,

$$\operatorname{meas}_{\mathcal{G}}(\{x\in\mathcal{G},u(x)>t\})=\operatorname{meas}_{\mathbb{R}^+}(\{x\in]0,|\mathcal{G}|[,u^*(x)>t\}).$$

Decreasing rearrangement on the halfline





Fundamental property: for all t > 0,

$$\operatorname{meas}_{\mathcal{G}}(\{x \in \mathcal{G}, u(x) > t\}) = \operatorname{meas}_{\mathbb{R}^+}(\{x \in]0, |\mathcal{G}|[, u^*(x) > t\}).$$

Consequence: for all $1 \le p \le +\infty$,

$$||u||_{L^p(\mathcal{G})} = ||u^*||_{L^p(0,|\mathcal{G}|)}.$$

Metric graphs

Theorem

Metric graphs

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

$$\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \leq \|u'\|_{L^2(\mathcal{G})}.$$

Theorem

Metric graphs

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

$$\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \leq \|u'\|_{L^2(\mathcal{G})}.$$

Ground states

Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).

Theorem

Metric graphs

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

$$\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \leq \|u'\|_{L^2(\mathcal{G})}.$$

Ground states

- Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).
- Duff, G. Integral Inequalities for Equimeasurable Rearrangements. Canadian Journal of Mathematics 22 (1970), no. 2, 408–430.

NIS

Theorem

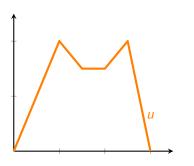
Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

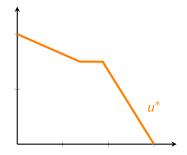
$$\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \leq \|u'\|_{L^2(\mathcal{G})}.$$

- Pólya, G., Szegő, G. *Isoperimetric Inequalities in Mathematical Physics*. Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).
- Duff, G. *Integral Inequalities for Equimeasurable Rearrangements*. Canadian Journal of Mathematics **22** (1970), no. 2, 408–430.
- Friedlander, L. Extremal properties of eigenvalues for a metric graph. Ann. Inst. Fourier (Grenoble) **55** (2005) no. 1, 199–211.

A simple case: affine functions

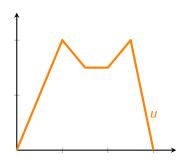
We assume that u is piecewise affine.

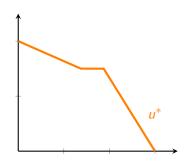




A simple case: affine functions

We assume that u is piecewise affine.

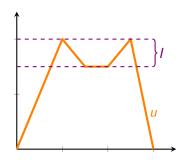


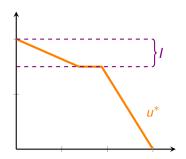


We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(I)$ consists of a disjoint union of open intervals on which u is affine.

A simple case: affine functions

We assume that u is piecewise affine.

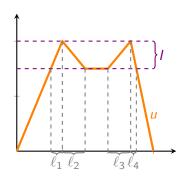


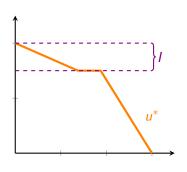


We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(I)$ consists of a disjoint union of open intervals on which u is affine.

A simple case: affine functions

We assume that u is piecewise affine.

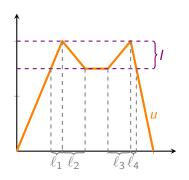


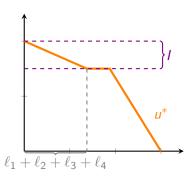


We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(I)$ consists of a disjoint union of open intervals on which u is affine.

A simple case: affine functions

We assume that u is piecewise affine.





We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(I)$ consists of a disjoint union of open intervals on which u is affine.

A simple case: affine functions

Metric graphs

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2}$$

Ground states

A simple case: affine functions

Metric graphs

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

A simple case: affine functions

Metric graphs

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Ground states

Contribution to $||(u^*)'||_{L^2}^2$:

$$B := \frac{|I|^2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}$$

A simple case: affine functions

Metric graphs

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Contribution to $||(u^*)'||_{L^2}^2$:

$$B := \frac{|I|^2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}$$

Inequality between arithmetic and harmonic means:

$$\frac{\ell_1 + \ell_2 + \ell_3 + \ell_4}{4} \geq \frac{4}{\frac{1}{\ell_1} + \frac{1}{\ell_2} + \frac{1}{\ell_3} + \frac{1}{\ell_4}}$$

A simple case: affine functions

Metric graphs

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Ground states

Contribution to $||(u^*)'||_{L^2}^2$:

$$B := \frac{|I|^2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}$$

Inequality between arithmetic and harmonic means:

$$\frac{\ell_1 + \ell_2 + \ell_3 + \ell_4}{4} \geq \frac{4}{\frac{1}{\ell_1} + \frac{1}{\ell_2} + \frac{1}{\ell_3} + \frac{1}{\ell_4}} \quad \Rightarrow \quad A \geq 4^2 B \geq B.$$

... or the importance of the number of preimages

Theorem

Metric graphs

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Let $\mathbb{N} \geq 1$ be an integer. Assume that, for almost every $t \in]0, \|u\|_{\infty}[$, one has

$$u^{-1}(\{t\}) = \{x \in \mathcal{G} \mid u(x) = t\} \ge N.$$

Ground states

Then one has

$$\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \leq \frac{1}{N} \|u'\|_{L^2(\mathcal{G})}.$$

Definition (Adami, Serra, Tilli 2014)

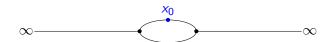
We say that a metric graph $\mathcal G$ satisfies assumption (H) if, for every point $x_0 \in \mathcal G$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\to \mathcal G$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = x_0$.

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\to \mathcal{G} \text{ parameterized}]$ by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = x_0$.

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph $\mathcal G$ satisfies assumption (H) if, for every point $\mathbf x_0 \in \mathcal G$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\to \mathcal G \text{ parameterized}]$ by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = \mathbf x_0$.



Definition (Adami, Serra, Tilli 2014)

We say that a metric graph $\mathcal G$ satisfies assumption (H) if, for every point $x_0 \in \mathcal G$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\to \mathcal G \text{ parameterized}]$ by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = x_0$.

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph $\mathcal G$ satisfies assumption (H) if, for every point $x_0\in\mathcal G$, there exist two injective curves $\gamma_1,\gamma_2:[0,+\infty[\to\mathcal G$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0)=\gamma_2(0)=x_0$.

Consequence: all nonnegative $H^1(\mathcal{G})$ functions have at least two preimages for almost every $t \in]0, ||u||_{\infty}[$.

Non-existence of ground states

Theorem (Adami, Serra, Tilli 2014)

If a metric graph \mathcal{G} has at least one halfline and satisfies assumption (H), then

Ground states

$$c_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u) = s_{\lambda}$$

but it is never achieved

Theorem (Adami, Serra, Tilli 2014)

If a metric graph ${\cal G}$ has at least one halfline and satisfies assumption (H), then

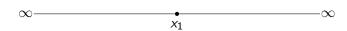
$$c_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u) = s_{\lambda}$$

but it is never achieved, unless \mathcal{G} is isometric to one of the exceptional graphs depicted in the next two slides.

Metric graphs

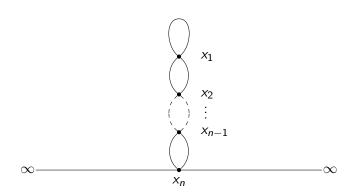
Non-existence of ground states

Exceptional graphs: the real line



Non-existence of ground states

Exceptional graphs: the real line with a tower of circles



We define

Metric graphs

$$X_e := \left\{ u \in H^1(\mathcal{G}) \mid \|u\|_{L^{\infty}(\mathcal{G})} = \|u\|_{L^{\infty}(e)} \right\}$$

Ground states

where e is a given bounded edge of $\mathcal G$

We define

Metric graphs

$$X_e := \left\{ u \in H^1(\mathcal{G}) \mid \|u\|_{L^\infty(\mathcal{G})} = \|u\|_{L^\infty(e)} \right\}$$

Ground states

where e is a given bounded edge of $\mathcal G$ and we consider the doubly–constrained minimization problem

$$c_{\lambda}(\mathcal{G},e) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G}) \cap X_e} J_{\lambda}(u).$$

We define

Metric graphs

$$X_e := \left\{ u \in H^1(\mathcal{G}) \mid \|u\|_{L^{\infty}(\mathcal{G})} = \|u\|_{L^{\infty}(e)} \right\}$$

Ground states

where e is a given bounded edge of $\mathcal G$ and we consider the doubly–constrained minimization problem

$$c_{\lambda}(\mathcal{G},e) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G}) \cap X_e} J_{\lambda}(u).$$

Theorem (De Coster, Dovetta, G., Serra (to appear))

If $\mathcal G$ satisfies assumption (H) has a **long enough** bounded edge e, then $c_\lambda(\mathcal G,e)$ is attained by a solution $u\in\mathcal S_\lambda(\mathcal G)$, such that u>0 or u<0 on $\mathcal G$ and

$$||u||_{L^{\infty}(e)} > ||u||_{L^{\infty}(\mathcal{G}\setminus e)}.$$

Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R} .

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

"nice" Sobolev embeddings

NIS

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

• "nice" Sobolev embeddings, H^1 functions are continuous;

Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

- "nice" Sobolev embeddings, H^1 functions are continuous;
- counting preimages;

Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

- "nice" Sobolev embeddings, H^1 functions are continuous;
- counting preimages;
- ODE techniques;

Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages;
- ODE techniques;
- ;

Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages;
- ODE techniques;
- **...**;

Replacing \mathcal{G} by noncompact smooth open sets $\Omega \subseteq \mathbb{R}^d$, $d \geq 2$ and $H^1(\mathcal{G})$ by $H^1(\Omega)$ or $H^1_0(\Omega)$, one expects that the four cases A1, A2, B1, B2 actually occur.

Mathematical motivations

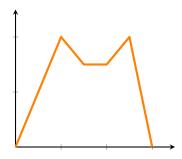
Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer then the usual class of intervals of \mathbb{R} .

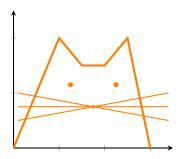
Dimension one has many advantages:

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages;
- ODE techniques;
- **...**;

Replacing \mathcal{G} by noncompact smooth open sets $\Omega \subseteq \mathbb{R}^d$, $d \geq 2$ and $H^1(\mathcal{G})$ by $H^1(\Omega)$ or $H^1_0(\Omega)$, one expects that the four cases A1, A2, B1, B2 actually occur. However, to this day, it remains on open problem!



Thanks for your attention!



Main papers

De Coster C., Dovetta S., Galant D., Serra E. *On the notion of ground state for nonlinear Schrödinger equations on metric graphs.* To appear.

Overviews of the subject

Thanksl

- Adami R. Ground states of the Nonlinear Schrodinger Equation on Graphs: an overview (Lisbon WADE).

 https://www.youtube.com/watch?v=G-FcnRVvoos (2020)
- Adami R., Serra E., Tilli P. *Nonlinear dynamics on branched structures and networks.* https://arxiv.org/abs/1705.00529 (2017)
- Kairzhan A., Noja D., Pelinovsky D. *Standing waves on quantum graphs*. J. Phys. A: Math. Theor. 55 243001 (2022)

• A boson² is a particle with integer spin.

²Here we will consider composite bosons, like atoms.

- A boson² is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.

²Here we will consider composite bosons, like atoms.

- A boson² is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at Bose-Einstein condensation.

²Here we will consider composite bosons, like atoms.

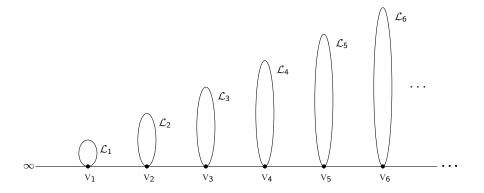
- A boson² is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: macroscopic quantum phenomenon!

²Here we will consider composite bosons, like atoms.

- A boson² is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at *Bose-Einstein condensation*.
- This is really remarkable: macroscopic quantum phenomenon!
- Since 2000: emergence of *atomtronics*, which studies circuits guiding the propagation of ultracold atoms.

²Here we will consider composite bosons, like atoms.

 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained



• Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\lambda}(\mathcal{G}) = s_{\lambda}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).

- Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\lambda}(\mathcal{G}) = s_{\lambda}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).
- Cutting solitons on the loops, one sees that

$$c_{\lambda}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n\to\infty]{} s_{\lambda}$$

- \blacksquare Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\lambda}(\mathcal{G}) = s_{\lambda}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).
- Cutting solitons on the loops, one sees that

$$c_{\lambda}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n\to\infty]{} s_{\lambda}$$

 $c_{\lambda}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n \to \infty]{} s_{\lambda}$ According to the existence Theorems, $c_{\lambda}(\mathcal{G},\mathcal{L}_n)$ is attained by a solution of (NLS) for every n large enough.

- Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\lambda}(\mathcal{G}) = s_{\lambda}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).
- Cutting solitons on the loops, one sees that

$$c_{\lambda}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n\to\infty]{} s_{\lambda}$$

- According to the existence Theorems, $c_{\lambda}(\mathcal{G}, \mathcal{L}_n)$ is attained by a solution of (NLS) for every n large enough.
- One obtains

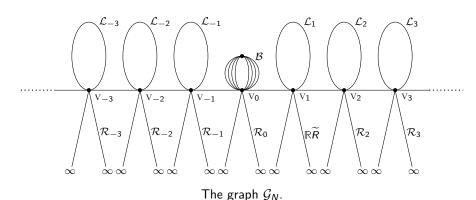
$$s_{\lambda} = c_{\lambda}(\mathcal{G}) \leq \sigma_{\lambda}(\mathcal{G}) \leq \liminf_{n \to \infty} c_{\lambda}(\mathcal{G}, \mathcal{L}_n) = s_{\lambda},$$

so

$$c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G}) = s_{\lambda}$$

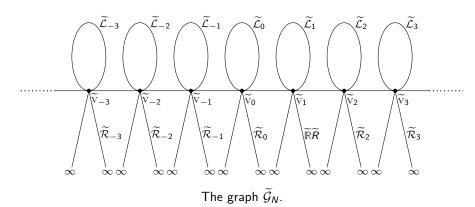
and neither infimum is attained.

 $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained



The loops \mathcal{L}_i have length N and \mathcal{B} is made of N edges of length 1.

A second, periodic, graph



The loops $\widetilde{\mathcal{L}}_i$ have length N.

Two problems at infinity

■ Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_{N}) = c_{\lambda}(\widetilde{\mathcal{G}}_{N}),$$

and neither infima is attained.

Two problems at infinity

■ Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_{N}) = c_{\lambda}(\widetilde{\mathcal{G}}_{N}),$$

and neither infima is attained.

• One can show that, if N is large enough, then $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$).

Two problems at infinity

■ Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_{N}) = c_{\lambda}(\widetilde{\mathcal{G}}_{N}),$$

and neither infima is attained.

One can show that, if N is large enough, then $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}) > s_{\lambda}$.

Two problems at infinity

■ Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_{N}) = c_{\lambda}(\widetilde{\mathcal{G}}_{N}),$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}) > s_{\lambda}$.
- One then shows, using suitable rearrangement techniques, that

$$\sigma_{\lambda}(\mathcal{G}_{N}) = \sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}),$$

but that $\sigma_{\lambda}(\mathcal{G}_N)$ is not attained.

Two problems at infinity

■ Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_{N}) = c_{\lambda}(\widetilde{\mathcal{G}}_{N}),$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}) > s_{\lambda}$.
- One then shows, using suitable rearrangement techniques, that

$$\sigma_{\lambda}(\mathcal{G}_{N}) = \sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}),$$

but that $\sigma_{\lambda}(\mathcal{G}_N)$ is not attained.

 \blacksquare Therefore, for large N, we have that

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_{N}) < \sigma_{\lambda}(\mathcal{G}_{N}),$$

and neither infima is attained, as claimed.