On the notion of "ground state" for the nonlinear Schrödinger equation on metric graphs

Séminaire d'analyse appliquée A^{3} - LAMFA

Damien Galant

CERAMATHS/DMATHS Département de Mathématique
Université Polytechnique
Hauts-de-France

Université de Mons
F.R.S.-FNRS Research Fellow

Joint work with Colette De Coster (UPHF), Simone Dovetta and Enrico Serra (Politecnico di Torino)

Monday 16 January 2023

1 Metric graphs

2 The nonlinear Schrödinger equation on metric graphs

3 On the notion of ground state

4 Some proof techniques

What is a metric graph?

A metric graph is made of vertices

What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

- metric graphs: the length of edges are important.

What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

- metric graphs: the length of edges are important.
- the edges going to infinity are halflines and have infinite length.

What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

- metric graphs: the length of edges are important.
- the edges going to infinity are halflines and have infinite length.
- a metric graph is compact if and only if it has a finite number of edges of finite length.

Constructions based on halflines

The halfline

Constructions based on halflines

$-\infty$

The halfline

The line

Constructions based on halflines

The halfline

The 5-star graph

The line

Metric graphs
 Constructions based on halflines

The halfline

The 5-star graph

The line

The 6-star graph

Functions defined on metric graphs

A metric graph \mathcal{G} with three edges e_{0} (length 5), e_{1} (length 4) and e_{2} (length 3)

Functions defined on metric graphs

A metric graph \mathcal{G} with three edges e_{0} (length 5), e_{1} (length 4) and e_{2} (length 3), a function $f: \mathcal{G} \rightarrow \mathbb{R}$

Functions defined on metric graphs

A metric graph \mathcal{G} with three edges e_{0} (length 5), e_{1} (length 4) and e_{2} (length 3), a function $f: \mathcal{G} \rightarrow \mathbb{R}$, and the three associated real functions.

Functions defined on metric graphs

A metric graph \mathcal{G} with three edges e_{0} (length 5), e_{1} (length 4) and e_{2} (length 3), a function $f: \mathcal{G} \rightarrow \mathbb{R}$, and the three associated real functions.

$$
\int_{\mathcal{G}} f \mathrm{~d} x \stackrel{\text { def }}{=} \int_{0}^{5} f_{0}(x) \mathrm{d} x+\int_{0}^{4} f_{1}(x) \mathrm{d} x+\int_{0}^{3} f_{2}(x) \mathrm{d} x
$$

Why studying metric graphs?

Physical motivations

Modeling structures where only one spatial direction is important.

A «fat graph» and the underlying metric graph

The differential system

Given constants $p>2$ and $\lambda>0$, we are interested in solutions $u \in L^{2}(\mathcal{G})$ of the differential system

The differential system

Given constants $p>2$ and $\lambda>0$, we are interested in solutions $u \in L^{2}(\mathcal{G})$ of the differential system

$$
\left(u^{\prime \prime}+|u|^{p-2} u=\lambda u \quad \text { on each edge } e \text { of } \mathcal{G},\right.
$$

The differential system

Given constants $p>2$ and $\lambda>0$, we are interested in solutions $u \in L^{2}(\mathcal{G})$ of the differential system

$$
\begin{cases}u^{\prime \prime}+|u|^{p-2} u=\lambda u & \text { on each edge } e \text { of } \mathcal{G} \\ u \text { is continuous } & \text { for every vertex } \mathrm{V} \text { of } \mathcal{G} \\ & \end{cases}
$$

The differential system

Given constants $p>2$ and $\lambda>0$, we are interested in solutions $u \in L^{2}(\mathcal{G})$ of the differential system

$$
\begin{cases}u^{\prime \prime}+|u|^{p-2} u=\lambda u & \text { on each edge e of } \mathcal{G} \\ u \text { is continuous } & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G} \\ \sum_{e \succ \mathrm{v}} \frac{\mathrm{~d} u}{\mathrm{~d} x_{e}}(\mathrm{v})=0 & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G}\end{cases}
$$

The differential system

Given constants $p>2$ and $\lambda>0$, we are interested in solutions $u \in L^{2}(\mathcal{G})$ of the differential system

$$
\begin{cases}u^{\prime \prime}+|u|^{p-2} u=\lambda u & \text { on each edge } e \text { of } \mathcal{G} \\ u \text { is continuous } & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G} \\ \sum_{e \succ \mathrm{v}} \frac{\mathrm{~d} u}{\mathrm{~d} x_{e}}(\mathrm{v})=0 & \text { for every vertex } \mathrm{V} \text { of } \mathcal{G}\end{cases}
$$

where the symbol $e \succ \mathrm{~V}$ means that the sum ranges over all edges of vertex V and where $\frac{\mathrm{d} u}{\mathrm{~d} x_{e}}(\mathrm{~V})$ is the outgoing derivative of u at V (Kirchhoff's condition).

The differential system

Given constants $p>2$ and $\lambda>0$, we are interested in solutions $u \in L^{2}(\mathcal{G})$ of the differential system

$$
\begin{cases}u^{\prime \prime}+|u|^{p-2} u=\lambda u & \text { on each edge } e \text { of } \mathcal{G} \tag{NLS}\\ u \text { is continuous } & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G} \\ \sum_{e \succ \mathrm{v}} \frac{\mathrm{~d} u}{\mathrm{~d} x_{e}}(\mathrm{v})=0 & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G}\end{cases}
$$

where the symbol $e \succ \mathrm{v}$ means that the sum ranges over all edges of vertex V and where $\frac{\mathrm{d} u}{\mathrm{~d} x_{e}}(\mathrm{~V})$ is the outgoing derivative of u at V (Kirchhoff's condition).

The differential system

Given constants $p>2$ and $\lambda>0$, we are interested in solutions $u \in L^{2}(\mathcal{G})$ of the differential system

$$
\begin{cases}u^{\prime \prime}+|u|^{p-2} u=\lambda u & \text { on each edge } e \text { of } \mathcal{G} \tag{NLS}\\ u \text { is continuous } & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G} \\ \sum_{e \succ \mathrm{v}} \frac{\mathrm{~d} u}{\mathrm{~d} x_{e}}(\mathrm{v})=0 & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G}\end{cases}
$$

where the symbol $e \succ \mathrm{~V}$ means that the sum ranges over all edges of vertex V and where $\frac{\mathrm{d} u}{\mathrm{~d} x_{e}}(\mathrm{~V})$ is the outgoing derivative of u at V (Kirchhoff's condition).
We denote by $\mathcal{S}_{\lambda}(\mathcal{G})$ the set of solutions of the differential system.

Kirchoff's condition: degree one nodes

Kirchoff's condition: degree one nodes

In other words, the derivative of u at x_{1} vanishes: this is the usual Neumann condition.

Kirchoff's condition: degree two nodes

$$
\begin{aligned}
& \left.\infty \longrightarrow{\stackrel{x}{x_{1}} \rightarrow}_{\infty}^{t}\right)+\left(\lim _{t \rightarrow 0} \frac{u\left(x_{1}-t\right)-u\left(x_{1}\right)}{t}\right)=0
\end{aligned}
$$

Kirchoff's condition: degree two nodes

$$
\begin{aligned}
& \left.\infty \longrightarrow{\stackrel{\rightharpoonup}{x_{1}} \rightarrow}_{\bullet}^{t}\right)+\left(\lim _{t \rightarrow 0} \frac{u\left(x_{1}-t\right)-u\left(x_{1}\right)}{t}\right)=0
\end{aligned}
$$

In other words, the left and right derivatives of u are equal, which simply means that u is differentiable at x_{1}. This explains why usually we do not put degree two nodes.

Kirchoff's condition in general: outgoing derivatives

$$
\sum_{e \succ \mathrm{~V}} \frac{\mathrm{~d} u}{\mathrm{~d} x_{e}}(\mathrm{~V})=0
$$

The real line: $\mathcal{G}=\mathbb{R}$

$$
\mathcal{S}_{\lambda}(\mathbb{R})=\left\{ \pm \varphi_{\lambda}(x+a) \mid a \in \mathbb{R}\right\}
$$

where the soliton φ_{λ} is the unique strictly positive and even solution to

$$
u^{\prime \prime}+|u|^{p-2} u=\lambda u
$$

The real line: $\mathcal{G}=\mathbb{R}$

$$
\mathcal{S}_{\lambda}(\mathbb{R})=\left\{ \pm \varphi_{\lambda}(x+a) \mid a \in \mathbb{R}\right\}
$$

where the soliton φ_{λ} is the unique strictly positive and even solution to

$$
u^{\prime \prime}+|u|^{p-2} u=\lambda u
$$

The real line: $\mathcal{G}=\mathbb{R}$

$$
\mathcal{S}_{\lambda}(\mathbb{R})=\left\{ \pm \varphi_{\lambda}(x+a) \mid a \in \mathbb{R}\right\}
$$

where the soliton φ_{λ} is the unique strictly positive and even solution to

$$
u^{\prime \prime}+|u|^{p-2} u=\lambda u .
$$

The halfline： $\mathcal{G}=\mathbb{R}^{+}=[0,+\infty[$

Solutions are half－solitons：no more translations！

The positive solution on the 3-star graph

The positive solution on the 5-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

Variational formulation

We work on the Sobolev space

$$
H^{1}(\mathcal{G}):=\left\{u: \mathcal{G} \rightarrow \mathbb{R} \mid u \text { is continuous, } u, u^{\prime} \in L^{2}(\mathcal{G})\right\} .
$$

Variational formulation

We work on the Sobolev space

$$
H^{1}(\mathcal{G}):=\left\{u: \mathcal{G} \rightarrow \mathbb{R} \mid u \text { is continuous, } u, u^{\prime} \in L^{2}(\mathcal{G})\right\} .
$$

Solutions of (NLS) correspond to critical points of the action functional

$$
J_{\lambda}(u):=\frac{1}{2}\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})}^{2}+\frac{1}{2}\|u\|_{L^{2}(\mathcal{G})}^{2}-\frac{1}{p}\|u\|_{L^{p}(\mathcal{G})}^{p} .
$$

The Euler-Lagrange equation associated to J_{λ}

The differential of $J_{\lambda}: H^{1}(\mathcal{G}) \rightarrow \mathbb{R}$ is given by

$$
J_{\lambda}^{\prime}(u)[v]=\int_{\mathcal{G}} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x+\lambda \int_{\mathcal{G}} u(x) v(x) \mathrm{d} x-\int_{\mathcal{G}}|u(x)|^{p-2} u(x) v(x) \mathrm{d} x
$$

The Euler-Lagrange equation associated to J_{λ}

The differential of $J_{\lambda}: H^{1}(\mathcal{G}) \rightarrow \mathbb{R}$ is given by
$J_{\lambda}^{\prime}(u)[v]=\int_{\mathcal{G}} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x+\lambda \int_{\mathcal{G}} u(x) v(x) \mathrm{d} x-\int_{\mathcal{G}}|u(x)|^{p-2} u(x) v(x) \mathrm{d} x$
If φ has compact support in the interior of an edge $e=\mathrm{AB}$, we have

$$
0=J_{\lambda}^{\prime}(u)[\varphi]
$$

The Euler-Lagrange equation associated to J_{λ}

The differential of $J_{\lambda}: H^{1}(\mathcal{G}) \rightarrow \mathbb{R}$ is given by
$J_{\lambda}^{\prime}(u)[v]=\int_{\mathcal{G}} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x+\lambda \int_{\mathcal{G}} u(x) v(x) \mathrm{d} x-\int_{\mathcal{G}}|u(x)|^{p-2} u(x) v(x) \mathrm{d} x$
If φ has compact support in the interior of an edge $e=\mathrm{AB}$, we have

$$
\begin{aligned}
0 & =J_{\lambda}^{\prime}(u)[\varphi] \\
& =\int_{e} u^{\prime}(x) \varphi^{\prime}(x) \mathrm{d} x+\lambda \int_{e} u(x) \varphi(x) \mathrm{d} x-\int_{e}|u(x)|^{p-2} u(x) \varphi(x) \mathrm{d} x
\end{aligned}
$$

The Euler-Lagrange equation associated to J_{λ}

The differential of $J_{\lambda}: H^{1}(\mathcal{G}) \rightarrow \mathbb{R}$ is given by
$J_{\lambda}^{\prime}(u)[v]=\int_{\mathcal{G}} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x+\lambda \int_{\mathcal{G}} u(x) v(x) \mathrm{d} x-\int_{\mathcal{G}}|u(x)|^{p-2} u(x) v(x) \mathrm{d} x$
If φ has compact support in the interior of an edge $e=\mathrm{AB}$, we have

$$
\begin{aligned}
0= & J_{\lambda}^{\prime}(u)[\varphi] \\
= & \int_{e}^{u^{\prime}}(x) \varphi^{\prime}(x) \mathrm{d} x+\lambda \int_{e} u(x) \varphi(x) \mathrm{d} x-\int_{e}|u(x)|^{p-2} u(x) \varphi(x) \mathrm{d} x \\
= & \frac{\mathrm{d} u}{\mathrm{~d} x_{e}}(\mathrm{~B}) \underbrace{\varphi(\mathrm{B})}_{=0}-\frac{\mathrm{d} u}{\mathrm{~d} x_{e}}(\mathrm{~A}) \underbrace{\varphi(\mathrm{A})}_{=0} \\
& +\int_{e}\left(-u^{\prime \prime}(x)+\lambda u(x)-|u(x)|^{p-2} u(x)\right) \varphi(x) \mathrm{d} x
\end{aligned}
$$

The Euler-Lagrange equation associated to J_{λ}

The differential of $J_{\lambda}: H^{1}(\mathcal{G}) \rightarrow \mathbb{R}$ is given by
$J_{\lambda}^{\prime}(u)[v]=\int_{\mathcal{G}} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x+\lambda \int_{\mathcal{G}} u(x) v(x) \mathrm{d} x-\int_{\mathcal{G}}|u(x)|^{p-2} u(x) v(x) \mathrm{d} x$
If φ has compact support in the interior of an edge $e=\mathrm{AB}$, we have

$$
\begin{aligned}
0= & J_{\lambda}^{\prime}(u)[\varphi] \\
= & \int_{e}^{u^{\prime}(x) \varphi^{\prime}(x) \mathrm{d} x+\lambda \int_{e} u(x) \varphi(x) \mathrm{d} x-\int_{e}|u(x)|^{p-2} u(x) \varphi(x) \mathrm{d} x} \\
= & \frac{\mathrm{d} u}{\mathrm{~d} x_{e}}(\mathrm{~B}) \underbrace{\varphi(\mathrm{B})}_{=0}-\frac{\mathrm{d} u}{\mathrm{~d} x_{e}}(\mathrm{~A}) \underbrace{\varphi(\mathrm{A})}_{=0} \\
& +\int_{e}\left(-u^{\prime \prime}(x)+\lambda u(x)-|u(x)|^{p-2} u(x)\right) \varphi(x) \mathrm{d} x
\end{aligned}
$$

so that $u^{\prime \prime}+|u|^{p-2} u=\lambda u$ on edges of \mathcal{G}.

Kirchhoff's condition

Let A be a vertex of \mathcal{G} and let $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{D}$ be the vertices adjacent to A .

Kirchhoff's condition

Let A be a vertex of \mathcal{G} and let $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{D}$ be the vertices adjacent to A . Define φ so that it is affine on all edges of $\mathcal{G}, \varphi(\mathrm{A})=1$ and $\varphi(\mathrm{V})=0$ for all vertices $\mathrm{V} \neq \mathrm{A}$. Denote $e_{i}:=\mathrm{AB}_{i}$. Then,

Kirchhoff's condition

Let A be a vertex of \mathcal{G} and let $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{D}$ be the vertices adjacent to A . Define φ so that it is affine on all edges of $\mathcal{G}, \varphi(\mathrm{A})=1$ and $\varphi(\mathrm{V})=0$ for all vertices $\mathrm{V} \neq \mathrm{A}$. Denote $e_{i}:=\mathrm{AB}_{i}$. Then,

$$
\begin{aligned}
0 & =J_{\lambda}^{\prime}(u)[\varphi] \\
& =\sum_{1 \leq i \leq D}\left(\int_{e_{i}} u^{\prime} \varphi^{\prime} \mathrm{d} x+\lambda \int_{e_{i}} u \varphi \mathrm{~d} x-\int_{e_{i}}|u|^{p-2} u \varphi \mathrm{~d} x\right)
\end{aligned}
$$

Kirchhoff's condition

Let A be a vertex of \mathcal{G} and let $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{D}$ be the vertices adjacent to A . Define φ so that it is affine on all edges of $\mathcal{G}, \varphi(\mathrm{A})=1$ and $\varphi(\mathrm{V})=0$ for all vertices $\mathrm{V} \neq \mathrm{A}$. Denote $e_{i}:=\mathrm{AB}_{i}$. Then,

$$
\begin{aligned}
0= & J_{\lambda}^{\prime}(u)[\varphi] \\
= & \sum_{1 \leq i \leq D}\left(\int_{e_{i}} u^{\prime} \varphi^{\prime} \mathrm{d} x+\lambda \int_{e_{i}} u \varphi \mathrm{~d} x-\int_{e_{i}}|u|^{p-2} u \varphi \mathrm{~d} x\right) \\
= & \sum_{1 \leq i \leq D}(\frac{\mathrm{~d} u}{\mathrm{~d} x_{e_{i}}}\left(\mathrm{~B}_{i}\right) \underbrace{\varphi\left(\mathrm{B}_{i}\right)}_{=0}-\frac{\mathrm{d} u}{\mathrm{~d} x_{e_{i}}}\left(\mathrm{~A}_{i}\right) \underbrace{\varphi(\mathrm{A})}_{=1}) \\
& +\sum_{1 \leq i \leq D} \int_{e_{i}}(\underbrace{-u^{\prime \prime}+\lambda u-|u|^{p-2} u}_{=0}) \varphi(x) \mathrm{d} x
\end{aligned}
$$

Kirchhoff's condition

Let A be a vertex of \mathcal{G} and let $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{D}$ be the vertices adjacent to A . Define φ so that it is affine on all edges of $\mathcal{G}, \varphi(\mathrm{A})=1$ and $\varphi(\mathrm{V})=0$ for all vertices $\mathrm{V} \neq \mathrm{A}$. Denote $e_{i}:=\mathrm{AB}_{i}$. Then,

$$
\begin{aligned}
0= & J_{\lambda}^{\prime}(u)[\varphi] \\
= & \sum_{1 \leq i \leq D}\left(\int_{e_{i}} u^{\prime} \varphi^{\prime} \mathrm{d} x+\lambda \int_{e_{i}} u \varphi \mathrm{~d} x-\int_{e_{i}}|u|^{p-2} u \varphi \mathrm{~d} x\right) \\
= & \sum_{1 \leq i \leq D}(\frac{\mathrm{~d} u}{\mathrm{~d} x_{e_{i}}}\left(\mathrm{~B}_{i}\right) \underbrace{\varphi\left(\mathrm{B}_{i}\right)}_{=0}-\frac{\mathrm{d} u}{\mathrm{~d} x_{e_{i}}}\left(\mathrm{~A}_{i}\right) \underbrace{\varphi(\mathrm{A})}_{=1}) \\
& +\sum_{1 \leq i \leq D} \int_{e_{i}}(\underbrace{-u^{\prime \prime}+\lambda u-|u|^{p-2} u}_{=0}) \varphi(x) \mathrm{d} x
\end{aligned}
$$

so that $\sum_{1 \leq i \leq D} \frac{\mathrm{~d} u}{\mathrm{~d} x_{e_{i}}}\left(\mathrm{~A}_{i}\right)=0$, which is Kirchhoff's condition.

The Nehari manifold

The functional J_{λ} is not bounded from below on $H^{1}(\mathcal{G})$, since if $u \neq 0$ then

$$
J_{\lambda}(t u)=\frac{t^{2}}{2}\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})}^{2}+\frac{t^{2}}{2}\|u\|_{L^{2}(\mathcal{G})}^{2}-\frac{t^{p}}{p}\|u\|_{L^{p}(\mathcal{G})}^{p} \xrightarrow[t \rightarrow \infty]{\longrightarrow}-\infty .
$$

The Nehari manifold

The functional J_{λ} is not bounded from below on $H^{1}(\mathcal{G})$, since if $u \neq 0$ then

$$
J_{\lambda}(t u)=\frac{t^{2}}{2}\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})}^{2}+\frac{t^{2}}{2}\|u\|_{L^{2}(\mathcal{G})}^{2}-\frac{t^{p}}{p}\|u\|_{L^{p}(\mathcal{G})}^{p} \underset{t \rightarrow \infty}{ }-\infty .
$$

A common strategy is to introduce the Nehari manifold $\mathcal{N}_{\lambda}(\mathcal{G})$, defined by

$$
\begin{aligned}
\mathcal{N}_{\lambda}(\mathcal{G}) & :=\left\{u \in H^{1}(\mathcal{G}) \backslash\{0\} \mid J_{\lambda}^{\prime}(u)[u]=0\right\} \\
& =\left\{u \in H^{1}(\mathcal{G}) \backslash\{0\} \mid\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})}^{2}+\lambda\|u\|_{L^{2}(\mathcal{G})}^{2}=\|u\|_{L^{p}(\mathcal{G})}^{p}\right\} .
\end{aligned}
$$

The Nehari manifold

The functional J_{λ} is not bounded from below on $H^{1}(\mathcal{G})$, since if $u \neq 0$ then

$$
J_{\lambda}(t u)=\frac{t^{2}}{2}\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})}^{2}+\frac{t^{2}}{2}\|u\|_{L^{2}(\mathcal{G})}^{2}-\frac{t^{p}}{p}\|u\|_{L^{p}(\mathcal{G})}^{p} \underset{t \rightarrow \infty}{\longrightarrow}-\infty .
$$

A common strategy is to introduce the Nehari manifold $\mathcal{N}_{\lambda}(\mathcal{G})$, defined by

$$
\begin{aligned}
\mathcal{N}_{\lambda}(\mathcal{G}) & :=\left\{u \in H^{1}(\mathcal{G}) \backslash\{0\} \mid J_{\lambda}^{\prime}(u)[u]=0\right\} \\
& =\left\{u \in H^{1}(\mathcal{G}) \backslash\{0\} \mid\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})}^{2}+\lambda\|u\|_{L^{2}(\mathcal{G})}^{2}=\|u\|_{L^{p}(\mathcal{G})}^{p}\right\} .
\end{aligned}
$$

If $u \in \mathcal{N}_{\lambda}(\mathcal{G})$, then

$$
J_{\lambda}(u)=\left(\frac{1}{2}-\frac{1}{p}\right)\|u\|_{L^{p}(\mathcal{G})}^{p} .
$$

In particular, J_{λ} is bounded from below on $\mathcal{N}_{\lambda}(\mathcal{G})$.

The Nehari manifold

Geometry ${ }^{1}$
One can show that for every $u \in H^{1}(\mathcal{G}) \backslash\{0\}$, there exists a unique $t_{u}>0$ so that $t_{u} u \in \mathcal{N}_{\lambda}(\mathcal{G})$, characterized by

$$
J_{\lambda}\left(t_{u} u\right)=\max _{t>0} J_{\lambda}(t u) .
$$

[^0]
Two energy levels

■ « Ground state » energy level:

$$
c_{\lambda}(\mathcal{G}):=\inf _{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u)
$$

Two energy levels

■ « Ground state» energy level:

$$
c_{\lambda}(\mathcal{G}):=\inf _{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u)
$$

■ Ground state: function $u \in \mathcal{N}_{\lambda}(\mathcal{G})$ with level $c_{\lambda}(\mathcal{G})$. It is a solution of the differential system (NLS).

Two energy levels

■ « Ground state» energy level:

$$
c_{\lambda}(\mathcal{G}):=\inf _{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u)
$$

■ Ground state: function $u \in \mathcal{N}_{\lambda}(\mathcal{G})$ with level $c_{\lambda}(\mathcal{G})$. It is a solution of the differential system (NLS).
■ Minimal level attained by the solutions of (NLS):

$$
\sigma_{\lambda}(\mathcal{G}):=\inf _{u \in \mathcal{S}_{\lambda}(\mathcal{G})} J_{\lambda}(u)
$$

Two energy levels

■ « Ground state » energy level:

$$
c_{\lambda}(\mathcal{G}):=\inf _{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u)
$$

■ Ground state: function $u \in \mathcal{N}_{\lambda}(\mathcal{G})$ with level $c_{\lambda}(\mathcal{G})$. It is a solution of the differential system (NLS).

- Minimal level attained by the solutions of (NLS):

$$
\sigma_{\lambda}(\mathcal{G}):=\inf _{u \in \mathcal{S}_{\lambda}(\mathcal{G})} J_{\lambda}(u)
$$

- Minimal action solution: solution $u \in \mathcal{S}_{\lambda}(\mathcal{G})$ of the differential system (NLS) of level $\sigma_{\lambda}(\mathcal{G})$.

Four cases

An analysis shows that four cases are possible:

Four cases

An analysis shows that four cases are possible:
A1) $c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and both infima are attained;

Four cases

An analysis shows that four cases are possible:
A1) $c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
A2) $c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;

Four cases

An analysis shows that four cases are possible:
A1) $c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
A2) $c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;
B1) $c_{\lambda}(\mathcal{G})<\sigma_{\lambda}(\mathcal{G}), \sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$;

Four cases

An analysis shows that four cases are possible:
A1) $c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
A2) $c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;
B1) $c_{\lambda}(\mathcal{G})<\sigma_{\lambda}(\mathcal{G}), \sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$;
B2) $c_{\lambda}(\mathcal{G})<\sigma_{\lambda}(\mathcal{G})$ and neither infima is attained.

Four cases

An analysis shows that four cases are possible:
A1) $c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
A2) $c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;
B1) $c_{\lambda}(\mathcal{G})<\sigma_{\lambda}(\mathcal{G}), \sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$;
B2) $c_{\lambda}(\mathcal{G})<\sigma_{\lambda}(\mathcal{G})$ and neither infima is attained.

Theorem (De Coster, Dovetta, G., Serra (to appear))

For every $p>2$, every $\lambda>0$, and every choice of alternative between A1, A2, B1, B2, there exists a metric graph \mathcal{G} where this alternative occurs.

Case A1

$c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and both infima are attained

Compact graphs

Case A1

$c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and both infima are attained

Compact graphs

The line

Metric graphs
 Case A1

$c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and both infima are attained

Compact graphs

The line

The halfline

Metric graphs
 Case A1

$c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and both infima are attained

Compact graphs

The line

The line with one pendant

A very useful tool: cutting solitons on halflines

Proposition

Assume that \mathcal{G} has at least one halfline. Then,

$$
c_{\lambda}(\mathcal{G}) \leq s_{\lambda}:=J_{\lambda}\left(\varphi_{\lambda}\right)
$$

A very useful tool: cutting solitons on halflines

Proposition

Assume that \mathcal{G} has at least one halfline. Then,

$$
c_{\lambda}(\mathcal{G}) \leq s_{\lambda}:=J_{\lambda}\left(\varphi_{\lambda}\right)
$$

Proof.


```
Case A1
c}\mp@subsup{c}{\lambda}{}(\mathcal{G})=\mp@subsup{\sigma}{\lambda}{}(\mathcal{G})\mathrm{ and both infima are attained
```


Theorem (Adami, Serra, Tilli 2014)

Let \mathcal{G} be a metric graph with finitely many edges, including at least one halfline. Assume that

$$
c_{\lambda}(\mathcal{G})<s_{\lambda}
$$

Then $c_{\lambda}(\mathcal{G})$ is attained, which means that there exists a ground state, so we are in case $A 1: c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$, both attained.

Case B1

$c_{\lambda}(\mathcal{G})<\sigma_{\lambda}(\mathcal{G}), \sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$

N-star graphs, $N \geq 3$

$$
s_{\lambda}=c_{\lambda}(\mathcal{G})<\sigma_{\lambda}(\mathcal{G})=\frac{N}{2} s_{\lambda}
$$

Case A2

$c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and neither infima is attained

$$
s_{\lambda}=c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})
$$

Case B2

$c_{\lambda}(\mathcal{G})<\sigma_{\lambda}(\mathcal{G})$ and neither infima is attained

Decreasing rearrangement on the halfline

Decreasing rearrangement on the halfline

Fundamental property: for all $t>0$,

$$
\operatorname{meas}_{\mathcal{G}}(\{x \in \mathcal{G}, u(x)>t\})=\operatorname{meas}_{\mathbb{R}^{+}}\left(\{x \in] 0,|\mathcal{G}|\left[, u^{*}(x)>t\right\}\right)
$$

Decreasing rearrangement on the halfline

Fundamental property: for all $t>0$,

$$
\operatorname{meas}_{\mathcal{G}}(\{x \in \mathcal{G}, u(x)>t\})=\operatorname{meas}_{\mathbb{R}^{+}}\left(\{x \in] 0,|\mathcal{G}|\left[, u^{*}(x)>t\right\}\right)
$$

Consequence: for all $1 \leq p \leq+\infty$,

$$
\|u\|_{L^{p}(\mathcal{G})}=\left\|u^{*}\right\|_{L^{p}(0,|\mathcal{G}|)} .
$$

The Pólya-Szegő inequality

Theorem

Let $u \in H^{1}(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^{*} belongs to $H^{1}(0,|\mathcal{G}|)$, and one has

$$
\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}(0,|\mathcal{G}|)} \leq\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})} .
$$

The Pólya-Szegő inequality

Theorem

Let $u \in H^{1}(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^{*} belongs to $H^{1}(0,|\mathcal{G}|)$, and one has

$$
\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}(0,|\mathcal{G}|)} \leq\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})} .
$$

Rólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).

The Pólya-Szegő inequality

Theorem

Let $u \in H^{1}(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^{*} belongs to $H^{1}(0,|\mathcal{G}|)$, and one has

$$
\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}(0,|\mathcal{G}|)} \leq\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})} .
$$

Rólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).
囯 Duff, G. Integral Inequalities for Equimeasurable Rearrangements. Canadian Journal of Mathematics 22 (1970), no. 2, 408-430.

The Pólya-Szegő inequality

Theorem

Let $u \in H^{1}(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^{*} belongs to $H^{1}(0,|\mathcal{G}|)$, and one has

$$
\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}(0,|\mathcal{G}|)} \leq\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})} .
$$

國 Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).
目 Duff, G. Integral Inequalities for Equimeasurable Rearrangements. Canadian Journal of Mathematics 22 (1970), no. 2, 408-430.

Friedlander, L. Extremal properties of eigenvalues for a metric graph. Ann. Inst. Fourier (Grenoble) 55 (2005) no. 1, 199-211.

The Pólya-Szegő inequality

A simple case: affine functions
We assume that u is piecewise affine.

The Pólya-Szegő inequality

A simple case: affine functions

We assume that u is piecewise affine.

We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(I)$ consists of a disjoint union of open intervals on which u is affine.

The Pólya-Szegő inequality

A simple case: affine functions
We assume that u is piecewise affine.

We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(I)$ consists of a disjoint union of open intervals on which u is affine.

The Pólya-Szegő inequality

A simple case: affine functions
We assume that u is piecewise affine.

We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(I)$ consists of a disjoint union of open intervals on which u is affine.

The Pólya-Szegő inequality

A simple case: affine functions
We assume that u is piecewise affine.

We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(I)$ consists of a disjoint union of open intervals on which u is affine.

The Pólya-Szegő inequality

A simple case: affine functions
Original contribution to $\left\|u^{\prime}\right\|_{L^{2}}^{2}$:

$$
A:=\ell_{1} \frac{|I|^{2}}{\ell_{1}^{2}}+\ell_{2} \frac{|I|^{2}}{\ell_{2}^{2}}+\ell_{3} \frac{|I|^{2}}{\ell_{3}^{2}}+\ell_{4} \frac{|I|^{2}}{\ell_{4}^{2}}
$$

The Pólya-Szegő inequality

A simple case: affine functions
Original contribution to $\left\|u^{\prime}\right\|_{L^{2}}^{2}$:

$$
A:=\ell_{1} \frac{|I|^{2}}{\ell_{1}^{2}}+\ell_{2} \frac{|I|^{2}}{\ell_{2}^{2}}+\ell_{3} \frac{|I|^{2}}{\ell_{3}^{2}}+\ell_{4} \frac{|I|^{2}}{\ell_{4}^{2}}=\frac{|I|^{2}}{\ell_{1}}+\frac{|I|^{2}}{\ell_{2}}+\frac{|I|^{2}}{\ell_{3}}+\frac{|I|^{2}}{\ell_{4}}
$$

The Pólya-Szegő inequality

A simple case: affine functions
Original contribution to $\left\|u^{\prime}\right\|_{L^{2}}^{2}$:

$$
A:=\ell_{1} \frac{|I|^{2}}{\ell_{1}^{2}}+\ell_{2} \frac{|I|^{2}}{\ell_{2}^{2}}+\ell_{3} \frac{|I|^{2}}{\ell_{3}^{2}}+\ell_{4} \frac{|I|^{2}}{\ell_{4}^{2}}=\frac{|I|^{2}}{\ell_{1}}+\frac{|I|^{2}}{\ell_{2}}+\frac{|I|^{2}}{\ell_{3}}+\frac{|I|^{2}}{\ell_{4}}
$$

Contribution to $\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}}^{2}$:

$$
B:=\frac{|I|^{2}}{\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}}
$$

The Pólya-Szegő inequality

A simple case: affine functions
Original contribution to $\left\|u^{\prime}\right\|_{L^{2}}^{2}$:

$$
A:=\ell_{1} \frac{|I|^{2}}{\ell_{1}^{2}}+\ell_{2} \frac{|I|^{2}}{\ell_{2}^{2}}+\ell_{3} \frac{|I|^{2}}{\ell_{3}^{2}}+\ell_{4} \frac{|I|^{2}}{\ell_{4}^{2}}=\frac{|I|^{2}}{\ell_{1}}+\frac{|I|^{2}}{\ell_{2}}+\frac{|I|^{2}}{\ell_{3}}+\frac{|I|^{2}}{\ell_{4}}
$$

Contribution to $\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}}^{2}$:

$$
B:=\frac{|I|^{2}}{\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}}
$$

Inequality between arithmetic and harmonic means:

$$
\frac{\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}}{4} \geq \frac{4}{\frac{1}{\ell_{1}}+\frac{1}{\ell_{2}}+\frac{1}{\ell_{3}}+\frac{1}{\ell_{4}}}
$$

The Pólya-Szegő inequality

A simple case: affine functions
Original contribution to $\left\|u^{\prime}\right\|_{L^{2}}^{2}$:

$$
A:=\ell_{1} \frac{|I|^{2}}{\ell_{1}^{2}}+\ell_{2} \frac{|I|^{2}}{\ell_{2}^{2}}+\ell_{3} \frac{|I|^{2}}{\ell_{3}^{2}}+\ell_{4} \frac{|I|^{2}}{\ell_{4}^{2}}=\frac{|I|^{2}}{\ell_{1}}+\frac{|I|^{2}}{\ell_{2}}+\frac{|I|^{2}}{\ell_{3}}+\frac{|I|^{2}}{\ell_{4}}
$$

Contribution to $\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}}^{2}$:

$$
B:=\frac{|I|^{2}}{\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}}
$$

Inequality between arithmetic and harmonic means:

$$
\frac{\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}}{4} \geq \frac{4}{\frac{1}{\ell_{1}}+\frac{1}{\ell_{2}}+\frac{1}{\ell_{3}}+\frac{1}{\ell_{4}}} \quad \Rightarrow \quad A \geq 4^{2} B \geq B
$$

A refined Pólya-Szegő inequality...

\ldots or the importance of the number of preimages

Theorem

Let $u \in H^{1}(\mathcal{G})$ be a nonnegative function. Let $N \geq 1$ be an integer. Assume that, for almost every $t \in] 0,\|u\|_{\infty}$ [, one has

$$
u^{-1}(\{t\})=\{x \in \mathcal{G} \mid u(x)=t\} \geq N .
$$

Then one has

$$
\left\|\left(u^{*}\right)^{\prime}\right\|_{L^{2}(0,|\mathcal{G}|)} \leq \frac{1}{N}\left\|u^{\prime}\right\|_{L^{2}(\mathcal{G})} .
$$

Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_{0} \in \mathcal{G}$, there exist two injective curves $\gamma_{1}, \gamma_{2}:[0,+\infty[\rightarrow \mathcal{G}$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_{1}(0)=\gamma_{2}(0)=x_{0}$.

Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_{0} \in \mathcal{G}$, there exist two injective curves $\gamma_{1}, \gamma_{2}:[0,+\infty[\rightarrow \mathcal{G}$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_{1}(0)=\gamma_{2}(0)=x_{0}$.

Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_{0} \in \mathcal{G}$, there exist two injective curves $\gamma_{1}, \gamma_{2}:[0,+\infty[\rightarrow \mathcal{G}$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_{1}(0)=\gamma_{2}(0)=x_{0}$.

Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_{0} \in \mathcal{G}$, there exist two injective curves $\gamma_{1}, \gamma_{2}:[0,+\infty[\rightarrow \mathcal{G}$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_{1}(0)=\gamma_{2}(0)=x_{0}$.

Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_{0} \in \mathcal{G}$, there exist two injective curves $\gamma_{1}, \gamma_{2}:[0,+\infty[\rightarrow \mathcal{G}$ parameterized by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_{1}(0)=\gamma_{2}(0)=x_{0}$.

Consequence: all nonnegative $H^{1}(\mathcal{G})$ functions have at least two preimages for almost every $t \in] 0,\|u\|_{\infty}[$.

Non-existence of ground states

Theorem (Adami, Serra, Tilli 2014)

If a metric graph \mathcal{G} has at least one halfline and satisfies assumption (H), then

$$
c_{\lambda}(\mathcal{G}):=\inf _{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u)=s_{\lambda}
$$

but it is never achieved

Non-existence of ground states

Theorem (Adami, Serra, Tilli 2014)

If a metric graph \mathcal{G} has at least one halfline and satisfies assumption (H), then

$$
c_{\lambda}(\mathcal{G}):=\inf _{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u)=s_{\lambda}
$$

but it is never achieved, unless \mathcal{G} is isometric to one of the exceptional graphs depicted in the next two slides.

Non-existence of ground states

Exceptional graphs: the real line

Non-existence of ground states

Exceptional graphs: the real line with a tower of circles

A doubly constrained variational problem

We define

$$
X_{e}:=\left\{u \in H^{1}(\mathcal{G}) \mid\|u\|_{L^{\infty}(\mathcal{G})}=\|u\|_{L^{\infty}(e)}\right\}
$$

where e is a given bounded edge of \mathcal{G}

A doubly constrained variational problem

We define

$$
X_{e}:=\left\{u \in H^{1}(\mathcal{G}) \mid\|u\|_{L^{\infty}(\mathcal{G})}=\|u\|_{L^{\infty}(e)}\right\}
$$

where e is a given bounded edge of \mathcal{G} and we consider the doubly-constrained minimization problem

$$
c_{\lambda}(\mathcal{G}, e):=\inf _{u \in \mathcal{N}_{\lambda}(\mathcal{G}) \cap X_{e}} J_{\lambda}(u) .
$$

A doubly constrained variational problem

We define

$$
X_{e}:=\left\{u \in H^{1}(\mathcal{G}) \mid\|u\|_{L^{\infty}(\mathcal{G})}=\|u\|_{L^{\infty}(e)}\right\}
$$

where e is a given bounded edge of \mathcal{G} and we consider the doubly-constrained minimization problem

$$
c_{\lambda}(\mathcal{G}, e):=\inf _{u \in \mathcal{N}_{\lambda}(\mathcal{G}) \cap X_{e}} J_{\lambda}(u) .
$$

Theorem (De Coster, Dovetta, G., Serra (to appear))

If \mathcal{G} satisfies assumption (H) has a long enough bounded edge e, then $c_{\lambda}(\mathcal{G}, e)$ is attained by a solution $u \in \mathcal{S}_{\lambda}(\mathcal{G})$, such that $u>0$ or $u<0$ on \mathcal{G} and

$$
\|u\|_{L^{\infty}(e)}>\|u\|_{L^{\infty}(\mathcal{G} \backslash e)} .
$$

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings, H^{1} functions are continuous;

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings, H^{1} functions are continuous;

- counting preimages;

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings, H^{1} functions are continuous;

- counting preimages;
- ODE techniques;

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings, H^{1} functions are continuous;

- counting preimages;
- ODE techniques;

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings, H^{1} functions are continuous;

- counting preimages;
- ODE techniques;

Replacing \mathcal{G} by noncompact smooth open sets $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$ and $H^{1}(\mathcal{G})$ by $H^{1}(\Omega)$ or $H_{0}^{1}(\Omega)$, one expects that the four cases $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B} 1$, B2 actually occur.

Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are much richer then the usual class of intervals of \mathbb{R}.

Dimension one has many advantages:
■ "nice" Sobolev embeddings, H^{1} functions are continuous;

- counting preimages;
- ODE techniques;

Replacing \mathcal{G} by noncompact smooth open sets $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$ and $H^{1}(\mathcal{G})$ by $H^{1}(\Omega)$ or $H_{0}^{1}(\Omega)$, one expects that the four cases $A 1, A 2, B 1, B 2$ actually occur. However, to this day, it remains on open problem!

Thanks for your attention!

Thanks for your attention!

Main papers

围 Adami, R., Serra, E., Tilli, P. NLS ground states on graphs. Calculus of Variations and Partial Differential Equations, 54(1), 743-761 (2015).
(De Coster C., Dovetta S., Galant D., Serra E. On the notion of ground state for nonlinear Schrödinger equations on metric graphs. To appear.

Overviews of the subject

Ratami R. Ground states of the Nonlinear Schrodinger Equation on Graphs: an overview (Lisbon WADE). https://www. youtube.com/watch?v=G-FcnRVvoos (2020)
: Adami R., Serra E., Tilli P. Nonlinear dynamics on branched structures and networks. https://arxiv.org/abs/1705.00529 (2017)
祭 Kairzhan A., Noja D., Pelinovsky D. Standing waves on quantum graphs. J. Phys. A: Math. Theor. 55243001 (2022)

An application: atomtronics

- A boson ${ }^{2}$ is a particle with integer spin.

[^1]
An application: atomtronics

- A boson ${ }^{2}$ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.

[^2]
An application: atomtronics

- A boson ${ }^{2}$ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at Bose-Einstein condensation.

[^3]
An application: atomtronics

- A boson ${ }^{2}$ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: macroscopic quantum phenomenon!

[^4]
An application: atomtronics

- A boson ${ }^{2}$ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: macroscopic quantum phenomenon!

■ Since 2000: emergence of atomtronics, which studies circuits guiding the propagation of ultracold atoms.

[^5]
What's going on in case A2?

$c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})$ and neither infima is attained

What's going on in case A2?

■ Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\lambda}(\mathcal{G})=s_{\lambda}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).

What's going on in case A2?

■ Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\lambda}(\mathcal{G})=s_{\lambda}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).
■ Cutting solitons on the loops, one sees that

$$
c_{\lambda}\left(\mathcal{G}, \mathcal{L}_{n}\right) \xrightarrow[n \rightarrow \infty]{ } s_{\lambda}
$$

What's going on in case A2?

■ Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\lambda}(\mathcal{G})=s_{\lambda}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).
■ Cutting solitons on the loops, one sees that

$$
c_{\lambda}\left(\mathcal{G}, \mathcal{L}_{n}\right) \xrightarrow[n \rightarrow \infty]{ } s_{\lambda}
$$

■ According to the existence Theorems, $c_{\lambda}\left(\mathcal{G}, \mathcal{L}_{n}\right)$ is attained by a solution of (NLS) for every n large enough.

What's going on in case A2?

■ Since \mathcal{G} has at least one halfline and satisfies assumption (H), one has $c_{\lambda}(\mathcal{G})=s_{\lambda}$ and the infimum is not attained (as \mathcal{G} does not belong to the class of exceptional graphs).
■ Cutting solitons on the loops, one sees that

$$
c_{\lambda}\left(\mathcal{G}, \mathcal{L}_{n}\right) \xrightarrow[n \rightarrow \infty]{ } s_{\lambda}
$$

- According to the existence Theorems, $c_{\lambda}\left(\mathcal{G}, \mathcal{L}_{n}\right)$ is attained by a solution of (NLS) for every n large enough.
- One obtains

$$
s_{\lambda}=c_{\lambda}(\mathcal{G}) \leq \sigma_{\lambda}(\mathcal{G}) \leq \liminf _{n \rightarrow \infty} c_{\lambda}\left(\mathcal{G}, \mathcal{L}_{n}\right)=s_{\lambda}
$$

SO

$$
c_{\lambda}(\mathcal{G})=\sigma_{\lambda}(\mathcal{G})=s_{\lambda}
$$

and neither infimum is attained.

What's going on in case B2?

$c_{\lambda}(\mathcal{G})<\sigma_{\lambda}(\mathcal{G})$ and neither infima is attained

The loops \mathcal{L}_{i} have length N and \mathcal{B} is made of N edges of length 1 .

What's going on in case B2?

A second, periodic, graph

The loops $\widetilde{\mathcal{L}}_{i}$ have length N.

What's going on in case B2?

Two problems at infinity

- Since \mathcal{G}_{N} and $\tilde{\mathcal{G}}_{N}$ satisfy (H) and contain halflines, one has

$$
s_{\lambda}=c_{\lambda}\left(\mathcal{G}_{N}\right)=c_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

and neither infima is attained.

What's going on in case B2?

Two problems at infinity

- Since \mathcal{G}_{N} and $\tilde{\mathcal{G}}_{N}$ satisfy (H) and contain halflines, one has

$$
s_{\lambda}=c_{\lambda}\left(\mathcal{G}_{N}\right)=c_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$).

What's going on in case B2?

Two problems at infinity

- Since \mathcal{G}_{N} and $\tilde{\mathcal{G}}_{N}$ satisfy (H) and contain halflines, one has

$$
s_{\lambda}=c_{\lambda}\left(\mathcal{G}_{N}\right)=c_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)>s_{\lambda}$.

What's going on in case B2?

Two problems at infinity

- Since \mathcal{G}_{N} and $\widetilde{\mathcal{G}}_{N}$ satisfy (H) and contain halflines, one has

$$
s_{\lambda}=c_{\lambda}\left(\mathcal{G}_{N}\right)=c_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)>s_{\lambda}$.
■ One then shows, using suitable rearrangement techniques, that

$$
\sigma_{\lambda}\left(\mathcal{G}_{N}\right)=\sigma_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

but that $\sigma_{\lambda}\left(\mathcal{G}_{N}\right)$ is not attained.

What's going on in case B2?

Two problems at infinity

- Since \mathcal{G}_{N} and $\widetilde{\mathcal{G}}_{N}$ satisfy (H) and contain halflines, one has

$$
s_{\lambda}=c_{\lambda}\left(\mathcal{G}_{N}\right)=c_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)
$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\lambda}\left(\widetilde{\mathcal{G}}_{N}\right)>s_{\lambda}$.
■ One then shows, using suitable rearrangement techniques, that

$$
\sigma_{\lambda}\left(\mathcal{G}_{N}\right)=\sigma_{\lambda}\left(\tilde{\mathcal{G}}_{N}\right)
$$

but that $\sigma_{\lambda}\left(\mathcal{G}_{N}\right)$ is not attained.

- Therefore, for large N, we have that

$$
s_{\lambda}=c_{\lambda}\left(\mathcal{G}_{N}\right)<\sigma_{\lambda}\left(\mathcal{G}_{N}\right)
$$

and neither infima is attained, as claimed.

[^0]: ${ }^{1}$ Thanks to C. Troestler for the picture!

[^1]: ${ }^{2}$ Here we will consider composite bosons, like atoms.

[^2]: ${ }^{2}$ Here we will consider composite bosons, like atoms.

[^3]: ${ }^{2}$ Here we will consider composite bosons, like atoms.

[^4]: ${ }^{2}$ Here we will consider composite bosons, like atoms.

[^5]: ${ }^{2}$ Here we will consider composite bosons, like atoms.

